Image 01 Image 02

LTSER Platform Neusiedlersee - Seewinkel (Emerging)

Operator: Biologische Station Neusiedler See, Illmitz
DEIMS-SDR Database: Neusiedlersee - Seewinkel
Contact: Thomas Zechmeister

Site description

The proposed Neusiedler See-Seewinkel LTSER site consists of the Neusiedler See lake itself, the Seewinkel located in the eastern part of the lake and the adjacent Austrian part of the Hansag. Due to its central location within the site, it will be managed by the Biologische Station Neusiedler See, Illmitz, with its current head Thomas Zechmeister. Already since the early 70th of the 20th century local and regional research has been coordinated and performed by this institution. The region is characterised by a hot, dry Pannonian climate with an annual precipitation of 700-800 mm and annual mean temperature of >9°C. In a relatively small area, plants and animals with Alpine, Asiatic and Mediterranean affinities, as well as northern species, are present, resulting in high species diversity. Although its origin can be traced to tectonic movements in the mid-Tertiary, the final shape of the landscape relates to the late Quaternary, when Tertiary sediments were partly covered by glacial clay, sand and loess deposits during glacial periods. Today two main economy sectors dominate the area: on the one hand intensive agriculture particularly crop-growing, wine growing and greenhouse-vegetable gardening and on the other hand, especially around the lake and focused on rather small places, tourism.

Biologische Station Neusiedler See

The lake is one of the most popular tourist destinations in the eastern part of Austria. In the last decades the typical regional tourism changed to a more diversified tourism based on the nature, national park, cycling and other sports activities, cultural traditions and events. Due to its transitional character many protection and management systems can be found. For instance National Park, Biosphere Reserve, Natural Heritage Site, Nature Conservation area, Protected Landscape are some of the attributes of the proposed area. Scientific research is therefore wide but can be summarised on (1) monitoring of freshwater ecosystems, (2) distribution of birds, (3) mapping and assessment of vegetation, (4) climate and climate change detection mainly situated on the eastern shore of the lake or concentrating on the small shallow lakes. Whereas research on (5) landscape character analysis, (6) regional identity and (7) regional development happens on a more regional scale. All scientific efforts together try to display abiotic and biotic as well as human impact on different ecosystems or go along already ongoing restoration measurements.


  • Bitenc M. (2007): Analysis of airborne laser scanning data and products in the Neusiedler See Project. Ekscentar, 10, 60­64.

  • Boros E., Zs. Horváth, G. Wolfram and L. Vörös (2014): Salinity and ionic composition of the shallow astatic soda pans in the Carpathian BasinJournal of Limnology Ann. Limnol. – Int. J. Lim. 50 (2014) 59-69

  • Hermann A., Kuttner M., Hainz-Renetzeder C., Konkoly-Gyuró E., Tirászi A., Brandenburg C., Allex B., Ziener K., Wrbka T. (2014): Assessment framework for landscape services in European cultural landscapes -– an Austrian Hungarian case study, Ecological Indicators, Vol. 37, Part A, 229-240

  • HORVÁTH Z., CSABA F. VAD, LAJOS VÖRÖS and EMIL BOROS (2013): The keystone role of anostracans and copepods in European soda pans during the spring migration of waterbirds. Freshwater Biology, vol. 58, Issue 2, pp. 430–440, 2013

  • Kirschner A.K.T., Schlesinger J., Farnleitner A.H., Hornek R., Süß B., Golda B., Herzig A., Reitner B. (2008): Rapid Growth of Planktonic Vibrio cholerae Non-O1/Non-O139 Strains in a Large Alkaline Lake in Austria : Dependence on Temperature and Dissolved Organic Carbon Quality"; Applied and Environmental Microbiology, 74 (2008), 7; 2004 - 2015.

  • Krammer M., Velimirov V., Fischer U., Farnleitner A.H., Herzig A., Kirschner A.K.T. (2008): Growth response of soda lake bacterial communities to simulated rainfall. Microb. Ecology, 55, 194-211

  • Kuttner M., Hainz-Renetzeder C., Hermann A., Wrbka T. (2013): Borders without barriers - Structural functionality and green infrastructure in the Austrian-Hungarian transboundary region of Lake Neusiedl. Ecological Indicators, Vol. 31, 59–72

  • Prinz M. A., Wrbka T., Reiter K. (2009): Long term changes in the Neusiedlersee-Seewinkel region - the development of shallow lakes. In:Breuste J., Kozová M. & Finka M. [eds] 2009. European Landscapes in Transformation: Challenges for Landscape Ecology and Management - European IALE Conference 2009

  • Schaible R., Bergmann I., et al. (2009): A survey of sexually reproducing female and male populations of Chara canescens (Charophyta) in the National Park Neusiedler See­Seewinkel (Austria). Cryptogamie Algologie 30(4): 279­294.

  • Schindler S., Dirnböck T., Essl F., Zink R., Dullinger S., Wrbka T., Mirtl M. (2011): An agenda for Austrian Biodiversity Research at the Long-term Ecosystem Research Network (LTER). In: Pavlinov IY (ed), Researches in Biodiversity: models and applications, InTech, Vienna. ISBN 979-953-307-253-0

  • Stojanovic A., Kogelnig D., Mitteregger B., Mader D., Jirsa F., Krachler Ru., Krachler Re. (2009): Major and trace element geochemistry of superficial sediments and suspended particulate matter of shallow saline lakes in Eastern Austria ; Chemie Der Erde-geochemistry - CHEM ERDE-GEOCHEMISTRY , vol. 69, no. 3, pp. 223-234, 2009

  • Wieltschnig C., Fischer U.R., Velimirov B., Kirschner A.K.T. (2008): Effects of deposit-feeding macrofauna on benthic bacteria, viruses, and protozoa in a silty freshwater sediment. Microb. Ecol. 56, 1-12

  • Wrbka T., Prinz M. A., Renetzeder C., Stocker-Kiss A., Brandenburg C., Ziener K. (2009): Man & Biosphere - Redesigning the Biosphere Reserve Neusiedler See - Endbericht. Akademie der Wissenschaft. Wien.

  • Wrbka T., Renetzeder C., Allex B., Balázs P., Brandenburg C., Hermann A., Konkoly-Gyuró É., Kuttner M., Prinz M., Schindler S., Ziener K., Zmelik K. (2010): Ecosystem Services as Means for Redesigning the Biosphere Reserve Neusiedler See. In: Machar I. & Kovar P. [eds.] International Conference in Landscape Ecology, 3.-6.092010, Brno. Book of Abstracts. p 162

  • Zechmeister T.C., Farnleitner A.H., Rocke T.C, Pittner F., Rosengarten R., Mach R.L., Herzig A., Kirschner A.K.T (2002): PCR and ELISA - in vitro alternatives to the mouse - bioassay for assessing the Botulinum-Neurotoxin-C1 production in environmental samples?; Altex - Alternativen zu Tierexperimenten, 19 (2002), 49 - 54.

  • Zechmeister T.C., Kirschner A.K.T, Fuchsberger M., Gruber S., Süß B., Rosengarten R., Pittner F., Mach R.L., Herzig A., Farnleitner A.H. (2005): Prevalence of Botulinum Neurotoxin C1 and its Corresponding Gene in Environmental Samples from Low and High Risk Avian Botulism Areas; Altex - Alternativen zu Tierexperimenten, 22 (2005), 3; 185 - 195.

  • Gruell A., Gross J. et al. (2007): Singing activity, territoriality and polygyny in the Hoopoe Upupa epops in the Lake Neusiedl area, Austria. Vogelwelt 128(2): 67­78.